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Abstract

We report a precise measurement of the D�
s meson lifetime. The data were taken

by the SELEX experiment (E781) spectrometer using 600 GeV/c ��, �� and p

beams. The measurement has been done using 918 reconstructed D�
s . The lifetime

of the D�
s is measured to be 472:5�17:2�6:6 fs, using K�(892)0K� and ��� decay

modes. The lifetime ratio of D�
s to D0 is 1:145� 0:049.
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1 Introduction

Precise measurements of the lifetimes of charm meson weak decays are im-
portant for understanding QCD in both perturbative and nonperturbative
regimes. For mesons a joint expansion in Heavy Quark E�ective Theory and
perturbative QCD parameters treated through the third order in the heavy
quark mass shows a term including non-spectator W-annihilation as well as
Pauli interference. The resulting non-leptonic decay rate di�erences between
W-exchange in D0 and W-annihilation in D�

s produce lifetime di�erences of
order 10-20 % (1).

The D�
s lifetime (2) was dominated by the measurements from E687 Collab-

oration (0.475 � 0.020 � 0.007 ps) (3). Recently new precision measurements
of the D�

s lifetime have been made by the E791 Collaboration (0.518 � 0.014
� 0.007 ps) (4) and the CLEO Collaboration (486.3 � 15.0 +4:9

�5:1 fs) (5). Both
groups have taken advantage of improved precision in the D0 lifetimemeasure-
ment to report new results for the D�

s toD
0 lifetime ratio of 1:254 � 0:041 (4)

and 1:190�0:042 (5). Their average is 7.4 � from unity, emphasizing the large
di�erence in W contributions to D�

s and D0 decays.

In this letter we report the results of a new measurement of the D�
s lifetime

based on data from the hadroproduction experiment SELEX (E781) at Fer-
milab. The measurement is based on about 1000 fully reconstructed decays
into KK� from a sample of 15.3 �109 hadronic triggers.

The SELEX detector at Fermilab is a 3-stage magnetic spectrometer. The
negatively charged 600 GeV/c beam contains nearly equal fractions of � and
�. The positive beam contains 92% protons. Beam particles are identi�ed
by a Transition Radiation detector. The spectrometer was designed to study
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charm production in the forward hemisphere with good mass and decay vertex
resolution for charm momenta in the range 100-500 GeV/c. Five interaction
targets (2 Cu and 3 C) had a total target thickess of 4.2% �int for protons.
The targets are spaced by 1.5 cm. Downstream of the targets are 20 silicon
planes with a strip pitch of 20-25 �m oriented in X, Y, U and V views. The
scattered-particle spectrometers have momentum cuto�s of 2.5 GeV/c and
15 GeV/c respectively. A Ring-Imaging Cerenkov detector (RICH) (6), �lled
with Neon at room temperature and pressure, provides single track ring radius
resolution of 1.4% and 2� K=� separation up to about 165 GeV/c. A layout
of the spectrometer can be found elsewhere (7).

2 Data set and charm selection

The charm trigger is very loose. It requires a valid beam track, at least 4
charged secondaries in the forward 150 mrad cone, and two hodoscope hits
after the second bending magnet from tracks of charge opposite to that of the
beam. We triggered on about 1/3 of all inelastic interactions. A computational
�lter linked PWC tracks having momenta > 15 GeV/c to hits in the vertex
silicon and made a full reconstruction of primary and secondary vertices in
the event. Events consistent with only a primary vertex are not saved. About
1/8 of all triggers are written to tape, for a �nal sample of about 109 events.

In the full analysis the vertex reconstruction was repeated with tracks of all
momenta. Again, only events inconsistent with having a single primary vertex
were considered. The RICH detector identi�ed charged tracks above 25 GeV/c.
Results reported here come from a preliminary reconstruction through the
data, using a production code optimized for speed, not ultimate eÆciency.
The simulated reconstruction eÆciency of any charmed state is constant at
about 40% for xF > 0:3 where > 60% of SELEX events lie.

To separate the signal from the noncharm background we require that: (i) the
spatial separation L between the reconstructed production and decay vertices
exceeds 8 times the combined error �L, (ii) each decay track, extrapolated to
the primary vertex z position, must miss by a transverse distance length t �
2.5 times its error �t, (iii) the secondary vertex must lie outside any target by
at least 0.05 cm and (iv) decays must occur within a �ducial region.

There are 918 � 53 events D�
s candidates, each having two RICH-identi�ed

kaons and a pion, for which no particle identi�cation is required. We divide
them into three decay channels: K�(892)0K�, ��� and other KK�. The res-
onant mass window for the K�(892)0 (�) was 892 � 70 MeV/c2 (1020 � 10
MeV/c2).

4



�=K misidenti�cation causes a reection of D� under the D�
s peak. We limit

the maximumkaon momentumto 160 GeV/c to reduce misidenti�cation in the
RICH. To evaluate the shape of this background we use the D� ! K�����

sample that passes all the cuts listed above and lies within � 15 MeV/c2 of the
D+ mass. We formed the invariant mass distribution of these events when one
pion is interpreted as a kaon. At most one of the two possible reections per
event falls into the D�

s mass window. The reected mass distribution was �t
by a polynomial function rising at 1925 MeV/c2 and decreasing to zero at large
invariant mass. Dividing this distribution by the number of D� events gives
us the contribution per mass bin for each misidenti�ed D� in the D�

s sample.
We count the misidenti�ed D� in the D�

s sample by �tting the D�
s mass

distribution within � 20 MeV/c2 interval around the D�
s mass with the sum

of a Gaussian signal, a linear background shape estimated from the sidebands
and theD� shape with variable normalization. The resultant misidenti�edD�

contribution to the D�
s mass distribution is shown as the hatched areas in Fig.

1(a), (b). The �t gives 52�7 and 12�3 misidenti�edD� events in theK�K and
�� decay mode, respectively (the error quoted is statistical only). The RICH
kaon identi�cation is a very powerful tool for rejecting D� contamination; �
decay kinematics further reduces particle identi�cation confusion in the ��
channel.

To estimate yields, we subtracted the sideband background and D� contami-
nation as evaluated above from the total number of events in the signal region.
We �nd 430 � 24 K�K and 330 � 19 �� events. A Gaussian �t to the com-
bined data shown in Fig. 1(a), (b) gives a mass of 1969 � 9:7 MeV=c2 and
�D�

s
= 8:0 MeV=c2. Note that these �tted yields are not used as constraints

in the lifetime �t, as discussed below.

3 Lifetime evaluation using a maximum likelihood �t

The average longitudinal error �z on the primary and secondary vertices is 270
�m and 500 �m, which gives a combined error of 570 �m. In the D�

s sample,
the average momentum is 215 GeV/c, corresponding to a time resolution of 18
fs, about 4% of �D�

s
. Because bin-smearing e�ects are small, we used a binned

maximumlikelihood �tting technique to determine theD�
s lifetime.The �t was

applied to a reduced proper time distribution, t� = M(L � Lmin)=pc where M
is the known charmmass (2), p the reconstructed momentum, L the measured
vertex separation and Lmin the minimum L for each event to pass all the
imposed selection cuts. Lmin is determined event-by-event, along with the
acceptance, by the procedure described below. We �tted all events with t� <
1600 fs in the mass range 1:949 < M(KK�) < 1:989 GeV=c2, � 2:5� from
the D�

s central mass value.
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To evaluate the mean lifetime we used a maximum likelihood method. The
probability density was performed by the function :

f(�Ds
; �Bck; �; �; t

�) =

(1 � �)NS
e
�t�=�

D
�
s

�(t�)�D�
s

+ �NSB(t
�) +

ND�

�D�

e�t
�=�

D� (1)

where

B(t�) =
�e�t

�=�Bck

�Bck
+
1 � �

t�Max

(2)

The function is the sum of a term for the D�
s exponential decay corrected

by the acceptance function �(t�) plus a background function B(t�) consist-
ing of a single exponential plus a constant to account for a at background
extending to large proper time. Its parameters were determined from the t�

distribution from the D�
s sidebands. It also includes a term for the D� expo-

nential decay normalized to the number of misidenti�ed events in the signal
region. The �D� lifetime used in the �t is 1051 �13 fs (2). The mass range
of the sideband background windows, 1:890 < M(KK�) < 1:930 GeV=c2 and
2:040 < M(KK�) < 2:080 GeV=c2 was twice the signal mass window. We
de�ned asymmetric sidebands to avoid the inuence of D� ! K+ K� ��,
and we excluded the D�(2010) mass region.

The four parameters are: �D�
s
(D�

s lifetime), �Bck (background lifetime), �
(background fraction in the signal region) and � (background splitting func-
tion). NS is the total number of events in the signal region after D� contam-
ination subtraction.

The proper-time-dependent acceptance �(t�) is independent of spectrometer
features after the �rst magnet, e.g., RICH eÆciency and tracking eÆciency.
These eÆciencies a�ect only the overall number of events detected. The proper
time distribution of these events depends crucially on vertex reconstruction.
To evaluate �(t�) we reanalyze each observed D�

s event after moving it to a
large set of di�erent proper times t�. Only the longitudinal position of the
charm decay point and the axial orientation of the 3-body decay vectors are
changed (8). A reanalyzed event is accepted if it passes the same cuts as those
applied to the data. The minimumight path after which an event is accepted
de�nes Lmin for this event. This method is independent of details of the true
xF or transverse momentum distributions (8).

Fig. 2 shows the overall �ts to the data distributions as a function of reduced
proper time for K�(892)0K� and ��� decay modes. It also shows the accep-
tance �(t�), which di�ers signi�cantly from unity only after 4 lifetimes where
statistics are limited.
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D�
s �D�

s
(fs) Signal

K�(892)0K� 472:3� 23:0 430� 24

��� 473:0� 26:0 330� 19

Average 472:5� 17:2 760� 30

Table 1
Lifetime results and signal yields for the two D�

s modes analyzed. The last row
is the weighted average of the two resonant channels K�(892)0K� and ���. The
errors are statistical only.

Source of uncertainty K�(892)0K� ���

Vertex reconstruction <1 <1

D� contamination 2 {

Acceptance function 3 2

Fit procedure 5 0.3

Total systematic error 6.2 2.2

Table 2
Systematic error contributions in fs.

Table 1 summarizes the lifetime results for the two modes analyzed: D�
s !

K�(892)0K�; and D�
s ! ���. The uncertainties are statistical only, evaluated

where � lnL increases by 0.5. Combining these results for the two resonant
modes, we measure an average lifetime �D�

s
= 472:5 � 17:2 fs.

4 Systematic errors

The systematic uncertainties for the D�
s lifetime analysis are listed in Table 2

and described below. We group them in the following categories:

4.1 Primary and secondary vertex reconstruction

Lifetime shifts due to reconstruction errors have been well studied in our D0

and �c work, with an order of magnitude higher statistics (8; 9). Because of
the high redundancy and good precision of the silicon vertex detector, vertex
mismeasurement e�ects are small at all momenta. Proper time assignment
depends on correct momentum determination. The SELEX momentum error
is less than 0.5% in all cases. We assign a maximum systematic error from
proper time mismeasurement of 1 fs.
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4.2 Misidenti�cation

The e�ect of D� contamination under the D�
s peak was studied by changing

the width of the exclusion window around the nominal D� mass for the K/�
interchange discussed above. E�ects on the �� mode are negligible. For the
K�(892)0K� mode this gives a systematic error of 2 fs.

4.3 Acceptance function

The technique to determine the acceptance correction dependence on proper
time is discussed extensively in Ref. (8). It has been veri�ed with much larger
statistics there. The maximum systematic error here is dominated by the
K�(892)0K� correction, 3 fs. For the ��� mode it is less than 2 fs.

4.4 Fit procedure

The �t was performed by the maximum likelihood method using a background
parametrized by an exponential function plus a constant. We varied the width
of the sidebands and the t�Max independently. The sytematic error due to the
�t procedure is 5 fs and less than 0.5 fs for K�(892)0K� and ��� decay
modes respectively. That error is mainly dominated by the D�

s background
parametrization.

Combining in quadrature all the sources of systematic errors listed in Table 2
we obtain a total systematic error of 6.2 fs (2.2 fs) for the K�(892)0K� (���)
mode.

5 CONCLUSIONS

We have made a new measurement of the D�
s lifetime in two independent

resonant decay channels, K�(892)0K� and ��� using a maximum likelihood
�t. SELEX measures the D�

s lifetime to be 472:5 � 17:2 � 6:6 fs. Using the
result reported in the PDG (2) �D0 = 412:6 � 2:8 fs we evaluate a ratio
�D�

s
=�D0 = 1:145 � 0:049, 3� from unity. The Ds lifetime reported in this

Letter is comparable in precision with previous experiments (4; 5). Our result,
combined with other world data, (2), lowers the overallD�

s lifetime somewhat.
Nevertheless, it is clear that the lifetime ratio �D�

s
=�D0 is signi�cantly larger

than unity for all the precision measurements.
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Fig. 1. Invariant mass distributions for a) D�
s ! K�(892)0K�, b) D�

s ! ���.
Hatched regions show theK+K� �� background frommisidenti�ed D�. The arrows
show the D�

s signal region.
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Fig. 2. Corrected reduced proper time distributions for events in the D�
s window

1969� 20 Mev/c2 (full circles) and results from the maximum likelihood �t (solid
curve) for: a)Ds

�
! K�(892)0K�; and b)Ds

�
! ���. The dashed curve shows the

�tted background, including the D� contribution. The dashed-dot curve describes
the acceptance function, �(t�).
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